|
| 1 | +import time |
| 2 | +from functools import partial |
| 3 | + |
| 4 | +from torch.utils.data import DataLoader |
| 5 | +from torcheval.metrics.functional import word_error_rate |
| 6 | +from torchtext.data.metrics import bleu_score |
| 7 | +from torchtext.datasets import CNNDM |
| 8 | +from torchtext.datasets import Multi30k |
| 9 | +from torchtext.models import T5_BASE_GENERATION |
| 10 | +from torchtext.prototype.generate import GenerationUtils |
| 11 | + |
| 12 | +multi_batch_size = 5 |
| 13 | +language_pair = ("en", "de") |
| 14 | +multi_datapipe = Multi30k(split="test", language_pair=language_pair) |
| 15 | +task = "translate English to German" |
| 16 | + |
| 17 | + |
| 18 | +def apply_prefix(task, x): |
| 19 | + return f"{task}: " + x[0], x[1] |
| 20 | + |
| 21 | + |
| 22 | +multi_datapipe = multi_datapipe.map(partial(apply_prefix, task)) |
| 23 | +multi_datapipe = multi_datapipe.batch(multi_batch_size) |
| 24 | +multi_datapipe = multi_datapipe.rows2columnar(["english", "german"]) |
| 25 | +multi_dataloader = DataLoader(multi_datapipe, batch_size=None) |
| 26 | + |
| 27 | + |
| 28 | +def benchmark_beam_search_wer(): |
| 29 | + model = T5_BASE_GENERATION.get_model() |
| 30 | + transform = T5_BASE_GENERATION.transform() |
| 31 | + |
| 32 | + seq_generator = GenerationUtils(model) |
| 33 | + |
| 34 | + batch = next(iter(multi_dataloader)) |
| 35 | + input_text = batch["english"] |
| 36 | + target = batch["german"] |
| 37 | + beam_size = 4 |
| 38 | + |
| 39 | + model_input = transform(input_text) |
| 40 | + model_output = seq_generator.generate(model_input, num_beams=beam_size, vocab_size=model.config.vocab_size) |
| 41 | + output_text = transform.decode(model_output.tolist()) |
| 42 | + |
| 43 | + print(word_error_rate(output_text, target)) |
| 44 | + |
| 45 | + |
| 46 | +if __name__ == "__main__": |
| 47 | + benchmark_beam_search_wer() |
0 commit comments