|
3 | 3 |
|
4 | 4 | import unittest
|
5 | 5 | import numpy as np
|
6 |
| - |
7 |
| -from econml.sklearn_extensions.linear_model import StatsModelsLinearRegression |
8 |
| -np.set_printoptions(suppress=True) |
9 |
| -from sklearn.preprocessing import PolynomialFeatures |
10 |
| -from sklearn.linear_model import LinearRegression, LogisticRegression |
11 |
| -import matplotlib.pyplot as plt |
12 |
| -from sklearn.model_selection import train_test_split |
13 |
| -from joblib import Parallel, delayed |
14 |
| - |
15 |
| -from econml.dml import DML, LinearDML, SparseLinearDML, NonParamDML |
16 |
| -from econml.metalearners import XLearner, TLearner, SLearner, DomainAdaptationLearner |
17 |
| -from econml.dr import DRLearner |
18 |
| -from econml.score import DRScorer |
19 | 6 | import scipy.special
|
| 7 | +from sklearn.linear_model import LassoCV |
| 8 | +from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor |
| 9 | +from sklearn.model_selection import KFold, StratifiedKFold |
| 10 | +from sklearn.utils import check_random_state |
20 | 11 |
|
21 |
| - |
22 |
| -def _fit_model(name, model, Y, T, X): |
23 |
| - return name, model.fit(Y, T, X=X) |
24 |
| - |
25 |
| - |
26 |
| -class TestDRScorer(unittest.TestCase): |
27 |
| - |
28 |
| - def _get_data(self): |
| 12 | +class TestDRLearner(unittest.TestCase): |
| 13 | + def test_default_models(self): |
| 14 | + np.random.seed(123) |
29 | 15 | X = np.random.normal(size=(1000, 3))
|
30 | 16 | T = np.random.binomial(2, scipy.special.expit(X[:, 0]))
|
31 | 17 | sigma = 0.001
|
32 |
| - y = (1 + .5 * X[:, 0]) * T + X[:, 0] + np.random.normal(0, sigma, size=(1000,)) |
33 |
| - return y, T, X, X[:, 0] |
| 18 | + y = (1 + 0.5 * X[:, 0]) * T + X[:, 0] + np.random.normal(0, sigma, size=(1000,)) |
| 19 | + est = DRLearner() |
| 20 | + est.fit(y, T, X=X, W=None) |
| 21 | + assert est.const_marginal_effect(X[:2]).shape == (2, 2) |
| 22 | + assert est.effect(X[:2], T0=0, T1=1).shape == (2,) |
| 23 | + assert isinstance(est.score_, float) |
| 24 | + assert isinstance(est.score(y, T, X=X), float) |
| 25 | + assert len(est.model_cate(T=1).coef_.shape) == 1 |
| 26 | + assert len(est.model_cate(T=2).coef_.shape) == 1 |
| 27 | + assert isinstance(est.cate_feature_names(), list) |
| 28 | + assert isinstance(est.models_regression[0][0].coef_, np.ndarray) |
| 29 | + assert isinstance(est.models_propensity[0][0].coef_, np.ndarray) |
34 | 30 |
|
35 |
| - def test_comparison(self): |
36 |
| - def reg(): |
37 |
| - return LinearRegression() |
38 |
| - |
39 |
| - def clf(): |
40 |
| - return LogisticRegression() |
| 31 | + def test_custom_models(self): |
| 32 | + np.random.seed(123) |
| 33 | + X = np.random.normal(size=(1000, 3)) |
| 34 | + T = np.random.binomial(2, scipy.special.expit(X[:, 0])) |
| 35 | + sigma = 0.01 |
| 36 | + y = (1 + 0.5 * X[:, 0]) * T + X[:, 0] + np.random.normal(0, sigma, size=(1000,)) |
| 37 | + est = DRLearner( |
| 38 | + model_propensity=RandomForestClassifier(n_estimators=100, min_samples_leaf=10), |
| 39 | + model_regression=RandomForestRegressor(n_estimators=100, min_samples_leaf=10), |
| 40 | + model_final=LassoCV(cv=3), |
| 41 | + featurizer=None |
| 42 | + ) |
| 43 | + est.fit(y, T, X=X, W=None) |
| 44 | + assert isinstance(est.score_, float) |
| 45 | + assert est.const_marginal_effect(X[:3]).shape == (3, 2) |
| 46 | + assert len(est.model_cate(T=2).coef_.shape) == 1 |
| 47 | + assert isinstance(est.model_cate(T=2).intercept_, float) |
| 48 | + assert len(est.model_cate(T=1).coef_.shape) == 1 |
| 49 | + assert isinstance(est.model_cate(T=1).intercept_, float) |
41 | 50 |
|
42 |
| - y, T, X, true_eff = self._get_data() |
43 |
| - (X_train, X_val, T_train, T_val, |
44 |
| - Y_train, Y_val, _, true_eff_val) = train_test_split(X, T, y, true_eff, test_size=.4) |
| 51 | + def test_cv_splitting_strategy(self): |
| 52 | + np.random.seed(123) |
| 53 | + X = np.random.normal(size=(1000, 3)) |
| 54 | + T = np.random.binomial(2, scipy.special.expit(X[:, 0])) |
| 55 | + sigma = 0.001 |
| 56 | + y = (1 + 0.5 * X[:, 0]) * T + X[:, 0] + np.random.normal(0, sigma, size=(1000,)) |
| 57 | + est = DRLearner(cv=2) |
| 58 | + est.fit(y, T, X=X, W=None) |
| 59 | + assert est.const_marginal_effect(X[:2]).shape == (2, 2) |
45 | 60 |
|
46 |
| - models = [('ldml', LinearDML(model_y=reg(), model_t=clf(), discrete_treatment=True, |
47 |
| - linear_first_stages=False, cv=3)), |
48 |
| - ('sldml', SparseLinearDML(model_y=reg(), model_t=clf(), discrete_treatment=True, |
49 |
| - featurizer=PolynomialFeatures(degree=2, include_bias=False), |
50 |
| - linear_first_stages=False, cv=3)), |
51 |
| - ('xlearner', XLearner(models=reg(), cate_models=reg(), propensity_model=clf())), |
52 |
| - ('dalearner', DomainAdaptationLearner(models=reg(), final_models=reg(), propensity_model=clf())), |
53 |
| - ('slearner', SLearner(overall_model=reg())), |
54 |
| - ('tlearner', TLearner(models=reg())), |
55 |
| - ('drlearner', DRLearner(model_propensity='auto', model_regression='auto', |
56 |
| - model_final=reg(), cv=3)), |
57 |
| - ('rlearner', NonParamDML(model_y=reg(), model_t=clf(), model_final=reg(), |
58 |
| - discrete_treatment=True, cv=3)), |
59 |
| - ('dml3dlasso', DML(model_y=reg(), model_t=clf(), model_final=reg(), discrete_treatment=True, |
60 |
| - featurizer=PolynomialFeatures(degree=3), |
61 |
| - linear_first_stages=False, cv=3)) |
62 |
| - ] |
| 61 | + def test_mc_iters(self): |
| 62 | + np.random.seed(123) |
| 63 | + X = np.random.normal(size=(1000, 3)) |
| 64 | + T = np.random.binomial(2, scipy.special.expit(X[:, 0])) |
| 65 | + sigma = 0.001 |
| 66 | + y = (1 + 0.5 * X[:, 0]) * T + X[:, 0] + np.random.normal(0, sigma, size=(1000,)) |
| 67 | + est = DRLearner() |
| 68 | + est.fit(y, T, X=X, W=None, inference='bootstrap', n_bootstrap_samples=50) |
63 | 69 |
|
64 |
| - models = Parallel(n_jobs=1, verbose=1)(delayed(_fit_model)(name, mdl, |
65 |
| - Y_train, T_train, X_train) |
66 |
| - for name, mdl in models) |
| 70 | + self.assertAlmostEqual(est.effect(X[:2], T0=0, T1=1, inference='bootstrap', n_bootstrap_samples=50).shape[0], 50) |
| 71 | + self.assertAlmostEqual(est.effect_interval(X[:2], T0=0, T1=1, alpha=0.05, inference='bootstrap', |
| 72 | + n_bootstrap_samples=50).shape, (2, 50, 2)) |
| 73 | + self.assertAlmostEqual(est.ortho_summary(X[:2], T0=0, T1=1, inference='bootstrap', |
| 74 | + n_bootstrap_samples=50).shape, (2, 2, 5)) |
| 75 | + self.assertAlmostEqual(est.ortho_intervals(X[:2], T0=0, T1=1, inference='bootstrap', n_bootstrap_samples=50, |
| 76 | + method='normal').shape, (2, 2, 2, 2)) |
67 | 77 |
|
68 |
| - scorer = DRScorer(model_propensity='auto', |
69 |
| - model_regression='auto', |
70 |
| - model_final=StatsModelsLinearRegression(), |
71 |
| - multitask_model_final=False, |
72 |
| - featurizer=None, |
73 |
| - min_propensity=1e-6, |
74 |
| - cv=3, |
75 |
| - mc_iters=2, |
76 |
| - mc_agg='median') |
77 |
| - scorer.fit(Y_val, T_val, X=X_val) |
78 |
| - rscore = [scorer.score(mdl) for _, mdl in models] |
79 |
| - rootpehe_score = [np.sqrt(np.mean((true_eff_val.flatten() - mdl.effect(X_val).flatten())**2)) |
80 |
| - for _, mdl in models] |
81 |
| - assert LinearRegression().fit(np.array(rscore).reshape(-1, 1), np.array(rootpehe_score)).coef_ < 0.5 |
82 |
| - mdl, _ = scorer.best_model([mdl for _, mdl in models]) |
83 |
| - rootpehe_best = np.sqrt(np.mean((true_eff_val.flatten() - mdl.effect(X_val).flatten())**2)) |
84 |
| - assert rootpehe_best < 1.5 * np.min(rootpehe_score) + 0.05 |
85 |
| - mdl, _ = scorer.ensemble([mdl for _, mdl in models]) |
86 |
| - rootpehe_ensemble = np.sqrt(np.mean((true_eff_val.flatten() - mdl.effect(X_val).flatten())**2)) |
87 |
| - assert rootpehe_ensemble < 1.5 * np.min(rootpehe_score) + 0.05 |
| 78 | + def test_score(self): |
| 79 | + np.random.seed(123) |
| 80 | + y = np.random.normal(size=(1000,)) |
| 81 | + T = np.random.binomial(2, 0.5, size=(1000,)) |
| 82 | + X = np.random.normal(size=(1000, 3)) |
| 83 | + est = DRScorer() |
| 84 | + est.fit(y, T, X=X, W=None) |
| 85 | + score = est.score() |
| 86 | + self.assertAlmostEqual(score, 0.05778546) |
0 commit comments