Skip to content

Commit 8b7fe33

Browse files
committed
Update copyright and links to point to PyWhy
Signed-off-by: Keith Battocchi <kebatt@microsoft.com>
1 parent 71c0809 commit 8b7fe33

File tree

131 files changed

+592
-591
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

131 files changed

+592
-591
lines changed

LICENSE

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
MIT License
22

3-
Copyright (c) Microsoft Corporation. All rights reserved.
3+
Copyright (c) PyWhy contributors. All rights reserved.
44

55
Permission is hereby granted, free of charge, to any person obtaining a copy
66
of this software and associated documentation files (the "Software"), to deal

README.md

+32-32
Original file line numberDiff line numberDiff line change
@@ -46,63 +46,63 @@ For information on use cases and background material on causal inference and het
4646

4747
# News
4848

49-
**November 16, 2022:** Release v0.14.0, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.14.0)
49+
**November 16, 2022:** Release v0.14.0, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.14.0)
5050

5151
<details><summary>Previous releases</summary>
5252

53-
**June 17, 2022:** Release v0.13.1, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.13.1)
53+
**June 17, 2022:** Release v0.13.1, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.13.1)
5454

55-
**January 31, 2022:** Release v0.13.0, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.13.0)
55+
**January 31, 2022:** Release v0.13.0, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.13.0)
5656

57-
**August 13, 2021:** Release v0.12.0, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.12.0)
57+
**August 13, 2021:** Release v0.12.0, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.12.0)
5858

59-
**August 5, 2021:** Release v0.12.0b6, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.12.0b6)
59+
**August 5, 2021:** Release v0.12.0b6, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.12.0b6)
6060

61-
**August 3, 2021:** Release v0.12.0b5, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.12.0b5)
61+
**August 3, 2021:** Release v0.12.0b5, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.12.0b5)
6262

63-
**July 9, 2021:** Release v0.12.0b4, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.12.0b4)
63+
**July 9, 2021:** Release v0.12.0b4, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.12.0b4)
6464

65-
**June 25, 2021:** Release v0.12.0b3, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.12.0b3)
65+
**June 25, 2021:** Release v0.12.0b3, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.12.0b3)
6666

67-
**June 18, 2021:** Release v0.12.0b2, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.12.0b2)
67+
**June 18, 2021:** Release v0.12.0b2, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.12.0b2)
6868

69-
**June 7, 2021:** Release v0.12.0b1, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.12.0b1)
69+
**June 7, 2021:** Release v0.12.0b1, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.12.0b1)
7070

71-
**May 18, 2021:** Release v0.11.1, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.11.1)
71+
**May 18, 2021:** Release v0.11.1, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.11.1)
7272

73-
**May 8, 2021:** Release v0.11.0, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.11.0)
73+
**May 8, 2021:** Release v0.11.0, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.11.0)
7474

75-
**March 22, 2021:** Release v0.10.0, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.10.0)
75+
**March 22, 2021:** Release v0.10.0, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.10.0)
7676

77-
**March 11, 2021:** Release v0.9.2, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.9.2)
77+
**March 11, 2021:** Release v0.9.2, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.9.2)
7878

79-
**March 3, 2021:** Release v0.9.1, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.9.1)
79+
**March 3, 2021:** Release v0.9.1, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.9.1)
8080

81-
**February 20, 2021:** Release v0.9.0, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.9.0)
81+
**February 20, 2021:** Release v0.9.0, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.9.0)
8282

83-
**January 20, 2021:** Release v0.9.0b1, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.9.0b1)
83+
**January 20, 2021:** Release v0.9.0b1, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.9.0b1)
8484

85-
**November 20, 2020:** Release v0.8.1, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.8.1)
85+
**November 20, 2020:** Release v0.8.1, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.8.1)
8686

87-
**November 18, 2020:** Release v0.8.0, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.8.0)
87+
**November 18, 2020:** Release v0.8.0, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.8.0)
8888

89-
**September 4, 2020:** Release v0.8.0b1, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.8.0b1)
89+
**September 4, 2020:** Release v0.8.0b1, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.8.0b1)
9090

91-
**March 6, 2020:** Release v0.7.0, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.7.0)
91+
**March 6, 2020:** Release v0.7.0, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.7.0)
9292

93-
**February 18, 2020:** Release v0.7.0b1, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.7.0b1)
93+
**February 18, 2020:** Release v0.7.0b1, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.7.0b1)
9494

95-
**January 10, 2020:** Release v0.6.1, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.6.1)
95+
**January 10, 2020:** Release v0.6.1, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.6.1)
9696

97-
**December 6, 2019:** Release v0.6, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.6)
97+
**December 6, 2019:** Release v0.6, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.6)
9898

99-
**November 21, 2019:** Release v0.5, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.5).
99+
**November 21, 2019:** Release v0.5, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.5).
100100

101-
**June 3, 2019:** Release v0.4, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.4).
101+
**June 3, 2019:** Release v0.4, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.4).
102102

103-
**May 3, 2019:** Release v0.3, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.3).
103+
**May 3, 2019:** Release v0.3, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.3).
104104

105-
**April 10, 2019:** Release v0.2, see release notes [here](https://github.com/Microsoft/EconML/releases/tag/v0.2).
105+
**April 10, 2019:** Release v0.2, see release notes [here](https://github.com/py-why/EconML/releases/tag/v0.2).
106106

107107
**March 6, 2019:** Release v0.1, welcome to have a try and provide feedback.
108108

@@ -645,7 +645,7 @@ importances = policy.feature_importances_
645645
![image](images/policy_tree.png)
646646
</details>
647647

648-
To see more complex examples, go to the [notebooks](https://github.com/Microsoft/EconML/tree/main/notebooks) section of the repository. For a more detailed description of the treatment effect estimation algorithms, see the EconML [documentation](https://econml.azurewebsites.net/).
648+
To see more complex examples, go to the [notebooks](https://github.com/py-why/EconML/tree/main/notebooks) section of the repository. For a more detailed description of the treatment effect estimation algorithms, see the EconML [documentation](https://econml.azurewebsites.net/).
649649

650650
# For Developers
651651

@@ -667,7 +667,7 @@ This project's documentation is generated via [Sphinx](https://www.sphinx-doc.or
667667

668668
To generate a local copy of the documentation from a clone of this repository, just run `python setup.py build_sphinx -W -E -a`, which will build the documentation and place it under the `build/sphinx/html` path.
669669

670-
The reStructuredText files that make up the documentation are stored in the [docs directory](https://github.com/Microsoft/EconML/tree/main/doc); module documentation is automatically generated by the Sphinx build process.
670+
The reStructuredText files that make up the documentation are stored in the [docs directory](https://github.com/py-why/EconML/tree/main/doc); module documentation is automatically generated by the Sphinx build process.
671671

672672
## Release process
673673

@@ -692,15 +692,15 @@ We use GitHub Actions to build and publish the package and documentation. To cr
692692

693693
If you use EconML in your research, please cite us as follows:
694694

695-
Keith Battocchi, Eleanor Dillon, Maggie Hei, Greg Lewis, Paul Oka, Miruna Oprescu, Vasilis Syrgkanis. **EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation.** https://github.com/microsoft/EconML, 2019. Version 0.x.
695+
Keith Battocchi, Eleanor Dillon, Maggie Hei, Greg Lewis, Paul Oka, Miruna Oprescu, Vasilis Syrgkanis. **EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation.** https://github.com/py-why/EconML, 2019. Version 0.x.
696696

697697
BibTex:
698698

699699
```
700700
@misc{econml,
701701
author={Keith Battocchi, Eleanor Dillon, Maggie Hei, Greg Lewis, Paul Oka, Miruna Oprescu, Vasilis Syrgkanis},
702702
title={{EconML}: {A Python Package for ML-Based Heterogeneous Treatment Effects Estimation}},
703-
howpublished={https://github.com/microsoft/EconML},
703+
howpublished={https://github.com/py-why/EconML},
704704
note={Version 0.x},
705705
year={2019}
706706
}

doc/conf.py

+3-3
Original file line numberDiff line numberDiff line change
@@ -21,8 +21,8 @@
2121
# -- Project information -----------------------------------------------------
2222

2323
project = 'econml'
24-
copyright = '2022, Microsoft Research'
25-
author = 'Microsoft Research'
24+
copyright = '2022, PyWhy contributors'
25+
author = 'PyWhy contributors'
2626
version = econml.__version__
2727
release = econml.__version__
2828

@@ -176,7 +176,7 @@
176176
# author, documentclass [howto, manual, or own class]).
177177
latex_documents = [
178178
(root_doc, 'econml.tex', 'econml Documentation',
179-
'Microsoft Research', 'manual'),
179+
'PyWhy contributors', 'manual'),
180180
]
181181

182182

doc/spec/estimation/dml.rst

+2-2
Original file line numberDiff line numberDiff line change
@@ -607,8 +607,8 @@ Usage Examples
607607
==================================
608608

609609
For more extensive examples check out the following notebooks:
610-
`DML Examples Jupyter Notebook <https://github.com/microsoft/EconML/blob/main/notebooks/Double%20Machine%20Learning%20Examples.ipynb>`_,
611-
`Forest Learners Jupyter Notebook <https://github.com/microsoft/EconML/blob/main/notebooks/ForestLearners%20Basic%20Example.ipynb>`_.
610+
`DML Examples Jupyter Notebook <https://github.com/py-why/EconML/blob/main/notebooks/Double%20Machine%20Learning%20Examples.ipynb>`_,
611+
`Forest Learners Jupyter Notebook <https://github.com/py-why/EconML/blob/main/notebooks/ForestLearners%20Basic%20Example.ipynb>`_.
612612

613613
.. rubric:: Single Outcome, Single Treatment
614614

doc/spec/estimation/dr.rst

+3-3
Original file line numberDiff line numberDiff line change
@@ -366,7 +366,7 @@ Usage FAQs
366366

367367
If you care more about mean squared error than confidence intervals and hypothesis testing, then use the
368368
:class:`.DRLearner` class and choose a cross-validated final model (checkout the
369-
`Forest Learners Jupyter notebook <https://github.com/microsoft/EconML/blob/main/notebooks/ForestLearners%20Basic%20Example.ipynb>`_
369+
`Forest Learners Jupyter notebook <https://github.com/py-why/EconML/blob/main/notebooks/ForestLearners%20Basic%20Example.ipynb>`_
370370
for such an example).
371371
Also the check out the :ref:`Orthogonal Random Forest User Guide <orthoforestuserguide>` or the
372372
:ref:`Meta Learners User Guide <metalearnersuserguide>`.
@@ -516,7 +516,7 @@ Usage Examples
516516

517517
Check out the following Jupyter notebooks:
518518

519-
* `Meta Learners Jupyter Notebook <https://github.com/microsoft/EconML/blob/main/notebooks/Metalearners%20Examples.ipynb>`_
520-
* `Forest Learners Jupyter Notebook <https://github.com/microsoft/EconML/blob/main/notebooks/ForestLearners%20Basic%20Example.ipynb>`_
519+
* `Meta Learners Jupyter Notebook <https://github.com/py-why/EconML/blob/main/notebooks/Metalearners%20Examples.ipynb>`_
520+
* `Forest Learners Jupyter Notebook <https://github.com/py-why/EconML/blob/main/notebooks/ForestLearners%20Basic%20Example.ipynb>`_
521521

522522

doc/spec/estimation/forest.rst

+2-2
Original file line numberDiff line numberDiff line change
@@ -315,8 +315,8 @@ Usage Examples
315315
Here is a simple example of how to call :class:`.DMLOrthoForest`
316316
and what the returned values correspond to in a simple data generating process.
317317
For more examples check out our
318-
`OrthoForest Jupyter notebook <https://github.com/Microsoft/EconML/blob/main/notebooks/Orthogonal%20Random%20Forest%20Examples.ipynb>`_
319-
and the `ForestLearners Jupyter notebook <https://github.com/microsoft/EconML/blob/main/notebooks/ForestLearners%20Basic%20Example.ipynb>`_ .
318+
`OrthoForest Jupyter notebook <https://github.com/py-why/EconML/blob/main/notebooks/Orthogonal%20Random%20Forest%20Examples.ipynb>`_
319+
and the `ForestLearners Jupyter notebook <https://github.com/py-why/EconML/blob/main/notebooks/ForestLearners%20Basic%20Example.ipynb>`_ .
320320

321321

322322
.. testcode::

doc/spec/estimation/metalearners.rst

+4-4
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@ These methods fall into the meta-learner category because they simply combine ML
1717
so as to get a final stage estimate and do not introduce new estimation components.
1818

1919
For examples of how to use our implemented metelearners check out this
20-
`Metalearners Jupyter notebook <https://github.com/Microsoft/EconML/blob/main/notebooks/Metalearners%20Examples.ipynb>`_. The examples
20+
`Metalearners Jupyter notebook <https://github.com/py-why/EconML/blob/main/notebooks/Metalearners%20Examples.ipynb>`_. The examples
2121
and documents here are only based on binary treatment setting, but all of these estimators are applicable to multiple treatment settings as well.
2222

2323

@@ -146,9 +146,9 @@ Usage Examples
146146

147147
Check out the following notebooks:
148148

149-
* `Metalearners Jupyter notebook <https://github.com/Microsoft/EconML/blob/main/notebooks/Metalearners%20Examples.ipynb>`_.
150-
* `DML Examples Jupyter Notebook <https://github.com/microsoft/EconML/blob/main/notebooks/Double%20Machine%20Learning%20Examples.ipynb>`_,
151-
* `Forest Learners Jupyter Notebook <https://github.com/microsoft/EconML/blob/main/notebooks/ForestLearners%20Basic%20Example.ipynb>`_.
149+
* `Metalearners Jupyter notebook <https://github.com/py-why/EconML/blob/main/notebooks/Metalearners%20Examples.ipynb>`_.
150+
* `DML Examples Jupyter Notebook <https://github.com/py-why/EconML/blob/main/notebooks/Double%20Machine%20Learning%20Examples.ipynb>`_,
151+
* `Forest Learners Jupyter Notebook <https://github.com/py-why/EconML/blob/main/notebooks/ForestLearners%20Basic%20Example.ipynb>`_.
152152

153153

154154
.. todo::

doc/spec/estimation/orthoiv.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -77,4 +77,4 @@ Usage Examples
7777
==================================
7878

7979
For more extensive examples check out the following notebooks:
80-
`OrthoIV and DRIV Examples Jupyter Notebook <https://github.com/microsoft/EconML/blob/main/notebooks/OrthoIV%20and%20DRIV%20Examples.ipynb>`_.
80+
`OrthoIV and DRIV Examples Jupyter Notebook <https://github.com/py-why/EconML/blob/main/notebooks/OrthoIV%20and%20DRIV%20Examples.ipynb>`_.

doc/spec/motivation.rst

+3-3
Original file line numberDiff line numberDiff line change
@@ -55,7 +55,7 @@ The DRIV model adjusts for the fact that not every customer who was offered the
5555
became a member and returns the effect of membership rather than the effect of receiving the quick sign-up.
5656

5757
Link to jupyter notebook:
58-
`Recommendation A/B Testing <https://github.com/microsoft/EconML/blob/main/notebooks/CustomerScenarios/Case%20Study%20-%20Recommendation%20AB%20Testing%20at%20An%20Online%20Travel%20Company.ipynb>`__
58+
`Recommendation A/B Testing <https://github.com/py-why/EconML/blob/main/notebooks/CustomerScenarios/Case%20Study%20-%20Recommendation%20AB%20Testing%20at%20An%20Online%20Travel%20Company.ipynb>`__
5959

6060
More details:
6161
`Trip Advisor Case Study <https://www.microsoft.com/en-us/research/uploads/prod/2020/04/MSR_ALICE_casestudy_2020.pdf>`__
@@ -82,7 +82,7 @@ The tree interpreter provides a presentation-ready summary of the key features
8282
that explain the biggest differences in responsiveness to a discount.
8383

8484
Link to jupyter notebook:
85-
`Customer Segmentation <https://github.com/microsoft/EconML/blob/main/notebooks/CustomerScenarios/Case%20Study%20-%20Customer%20Segmentation%20at%20An%20Online%20Media%20Company.ipynb>`__.
85+
`Customer Segmentation <https://github.com/py-why/EconML/blob/main/notebooks/CustomerScenarios/Case%20Study%20-%20Customer%20Segmentation%20at%20An%20Online%20Media%20Company.ipynb>`__.
8686

8787
Multi-investment Attribution
8888
-----------------------------
@@ -103,4 +103,4 @@ The model uses flexible functions of observed customer features to filter out co
103103
in existing data and deliver the causal effect of each effort on revenue.
104104

105105
Link to jupyter notebook:
106-
`Multi-investment Attribution <https://github.com/microsoft/EconML/blob/main/notebooks/CustomerScenarios/Case%20Study%20-%20Multi-investment%20Attribution%20at%20A%20Software%20Company.ipynb>`__.
106+
`Multi-investment Attribution <https://github.com/py-why/EconML/blob/main/notebooks/CustomerScenarios/Case%20Study%20-%20Multi-investment%20Attribution%20at%20A%20Software%20Company.ipynb>`__.

econml/__init__.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
# Copyright (c) Microsoft Corporation. All rights reserved.
1+
# Copyright (c) PyWhy contributors. All rights reserved.
22
# Licensed under the MIT License.
33

44
__all__ = ['automated_ml',

econml/_cate_estimator.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
# Copyright (c) Microsoft Corporation. All rights reserved.
1+
# Copyright (c) PyWhy contributors. All rights reserved.
22
# Licensed under the MIT License.
33

44
"""Base classes for all CATE estimators."""

econml/_ensemble/__init__.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
# Copyright (c) Microsoft Corporation. All rights reserved.
1+
# Copyright (c) PyWhy contributors. All rights reserved.
22
# Licensed under the MIT License.
33

44
from ._ensemble import BaseEnsemble, _partition_estimators

econml/_ensemble/_ensemble.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
# Copyright (c) Microsoft Corporation. All rights reserved.
1+
# Copyright (c) PyWhy contributors. All rights reserved.
22
# Licensed under the MIT License.
33
#
44
# This code is a fork from:

econml/_ensemble/_utilities.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
# Copyright (c) Microsoft Corporation. All rights reserved.
1+
# Copyright (c) PyWhy contributors. All rights reserved.
22
# Licensed under the MIT License.
33

44
import numbers

econml/_ortho_learner.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
# Copyright (c) Microsoft Corporation. All rights reserved.
1+
# Copyright (c) PyWhy contributors. All rights reserved.
22
# Licensed under the MIT License.
33

44
"""

econml/_shap.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
# Copyright (c) Microsoft Corporation. All rights reserved.
1+
# Copyright (c) PyWhy contributors. All rights reserved.
22
# Licensed under the MIT License.
33

44
"""Helper functions to get shap values for different cate estimators.

econml/_tree_exporter.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
# Copyright (c) Microsoft Corporation. All rights reserved.
1+
# Copyright (c) PyWhy contributors. All rights reserved.
22
# Licensed under the MIT License.
33
#
44
# This code contains some snippets of code from:

econml/_version.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
# Copyright (c) Microsoft Corporation. All rights reserved.
1+
# Copyright (c) PyWhy contributors. All rights reserved.
22
# Licensed under the MIT License.
33

44
__version__ = '0.14.0'

econml/automated_ml/__init__.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
# Copyright (c) Microsoft Corporation. All rights reserved.
1+
# Copyright (c) PyWhy contributors. All rights reserved.
22
# Licensed under the MIT License.
33

44
from ._automated_ml import (setAutomatedMLWorkspace, addAutomatedML,

econml/automated_ml/_automated_ml.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
# Copyright (c) Microsoft Corporation. All rights reserved.
1+
# Copyright (c) PyWhy contributors. All rights reserved.
22
# Licensed under the MIT License.
33

44
# AzureML

econml/cate_interpreter/__init__.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
# Copyright (c) Microsoft Corporation. All rights reserved.
1+
# Copyright (c) PyWhy contributors. All rights reserved.
22
# Licensed under the MIT License.
33

44
from ._interpreters import SingleTreeCateInterpreter, SingleTreePolicyInterpreter

econml/cate_interpreter/_interpreters.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
# Copyright (c) Microsoft Corporation. All rights reserved.
1+
# Copyright (c) PyWhy contributors. All rights reserved.
22
# Licensed under the MIT License.
33

44
import abc

econml/dml/__init__.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11

2-
# Copyright (c) Microsoft Corporation. All rights reserved.
2+
# Copyright (c) PyWhy contributors. All rights reserved.
33
# Licensed under the MIT License.
44

55
"""Double Machine Learning. The method uses machine learning methods to identify the

0 commit comments

Comments
 (0)