-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathHW3Tester.java
1577 lines (1501 loc) · 79.2 KB
/
HW3Tester.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import java.util.Arrays;
import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertTrue;
/**
* A test class for all methods in HW3.
* All methods have been tested, test cases and other information for the tests are described in the comments below.
* @author David Nguyen
* @since 11/14/2022
*/
public class HW3Tester {
/**
* Testing the ArbitraryFloatingPointNumbers class:
*/
/**
* Testing the getPrecision() method with 2 cases:
*/
@Test
public void testGetPrecision() {
int[] a1 = new int[] {9,5,1,4,1,3};
ArbitraryFloatingPointNumbers value1 = new ArbitraryFloatingPointNumbers (0, true, a1);
int[] a2 = new int[] {9,5,1,4,1,3,1};
ArbitraryFloatingPointNumbers value2 = new ArbitraryFloatingPointNumbers (1, false, a2);
int[] a3 = new int[] {9,5,1,4,1,3,1,4};
ArbitraryFloatingPointNumbers value3 = new ArbitraryFloatingPointNumbers (4, false, a3);
// Case 1: Test if this number’s Precision is 0
assertEquals(0, value1.getPrecision());
// Case 2: Test if this number’s Precision is 1
assertEquals(1, value2.getPrecision());
// Case 3: Test if this number’s Precision is more than 1 (4)
assertEquals(4, value3.getPrecision());
}
/**
* Testing the isNegativeNumber() method with 2 cases:
*/
@Test
public void testIsNegativeFloatingNumber() {
int[] a1 = new int[] {9,5,1,4,1,3};
ArbitraryFloatingPointNumbers value1 = new ArbitraryFloatingPointNumbers (5, true, a1);
int[] a2 = new int[] {9,5,1,4,1,3,1};
ArbitraryFloatingPointNumbers value2 = new ArbitraryFloatingPointNumbers (5, false, a2);
// Case 1: Test if this number is negative
assertEquals(true, value1.isNegativeNumber());
// Case 2: Test if this number is not negative
assertEquals(false, value2.isNegativeNumber());
}
/**
* Testing the toString() method with 6 cases:
*/
@Test
public void testToStringFloatingPoint() {
int[] a1 = new int[] {6,7,1};
ArbitraryFloatingPointNumbers value1 = new ArbitraryFloatingPointNumbers (4, true, a1);
int[] a2 = new int[] {0,0,0,3,4,5,6,0,0,0};
ArbitraryFloatingPointNumbers value2 = new ArbitraryFloatingPointNumbers (5, true, a2);
int[] a3 = new int[] {6,7,1};
ArbitraryFloatingPointNumbers value3 = new ArbitraryFloatingPointNumbers (3, true, a3);
int[] a4 = new int[] {6,7,1};
ArbitraryFloatingPointNumbers value4 = new ArbitraryFloatingPointNumbers (4, false, a4);
int[] a5 = new int[] {0,0,0,3,4,5,6,0,0,0};
ArbitraryFloatingPointNumbers value5 = new ArbitraryFloatingPointNumbers (5, false, a5);
int[] a6 = new int[] {6,7,1};
ArbitraryFloatingPointNumbers value6 = new ArbitraryFloatingPointNumbers (3, false, a6);
// Case 1: Test if this number is negative with its precision greater than its digits array’s length
assertEquals("-0.0176", value1.toString());
// Case 2: Test if this number is negative with its precision smaller than its digits array’s length
assertEquals("-65.43000", value2.toString());
// Case 3: Test if this number is negative with its precision equal to its digits array’s length
assertEquals("-0.176", value3.toString());
// Case 4: Test if this number is not negative with its precision greater than its digits array’s length
assertEquals("0.0176", value4.toString());
// Case 5: Test if this number is not negative with its precision smaller than its digits array’s length
assertEquals("65.43000", value5.toString());
// Case 6: Test if this number is not negative with its precision equal to its digits array’s length
assertEquals("0.176", value6.toString());
}
/**
* Testing the removeLeadingZero() method with 6 cases:
*/
@Test
public void testRemoveLeadingZeroFloatingPoint() {
int[] a1 = new int[] { 0, 0, 0, 3, 4, 5, 6 };
int[] a2 = new int[] { 0, 0, 0, 3, 4, 5, 6, 0 };
int[] a3 = new int[] { 0, 0, 0, 3, 4, 5, 6, 0, 0, 0 };
int[] a4 = new int[] { 0, 3, 4, 5, 6 };
int[] a5 = new int[] { 3, 4, 5, 6, 0 };
int[] a6 = new int[] { 3, 4, 5, 0, 6};
int[] a7 = new int[] { 3, 4, 5, 6 };
ArbitraryFloatingPointNumbers value1 = new ArbitraryFloatingPointNumbers (4, true, a1);
// Case 1: Test 0 - test if the given digits array contains no leading zero
assertEquals(true, Arrays.equals(value1.removeLeadingZero(a1), a1));
// Case 2: Test 1 - test if the given digits array contains 1 leading zero
assertEquals(true, Arrays.equals(value1.removeLeadingZero(a2), a1));
// Case 3: Test many - test if the given digits array contains many leading zeros
assertEquals(true, Arrays.equals(value1.removeLeadingZero(a3), a1));
// Case 4: Test first - test if the first digit of the given digits array is 0
assertEquals(true, Arrays.equals(value1.removeLeadingZero(a4), a4));
// Case 5: Test last - test if the last digit of the given digits array is 0
assertEquals(true, Arrays.equals(value1.removeLeadingZero(a5), a7));
// Case 6: Test middle - test if the middle digits of the given digits array is 0
assertEquals(true, Arrays.equals(value1.removeLeadingZero(a6), a6));
}
/**
* Testing the leftDecimals() method with 3 cases:
*/
@Test
public void testLeftDecimals() {
int[] a1 = new int[] {6,7,1};
ArbitraryFloatingPointNumbers value1 = new ArbitraryFloatingPointNumbers (3, true, a1);
int[] a2 = new int[] {0,0,0,3,4,5,6};
ArbitraryFloatingPointNumbers value2 = new ArbitraryFloatingPointNumbers (6, true, a2);
int[] a3 = new int[] {0,0,0,3,4,5,6};
ArbitraryFloatingPointNumbers value3 = new ArbitraryFloatingPointNumbers (4, true, a3);
// Case 1: Test if the number of digits to the left of floating point is 0
assertEquals(0, value1.leftDecimals(value1));
// Case 2: Test if the number of digits to the left of floating point is 1
assertEquals(1, value1.leftDecimals(value2));
// Case 3: Test if the number of digits to the left of floating point is 3
assertEquals(3, value1.leftDecimals(value3));
}
/**
* Testing the arrayToString() method with 2 cases:
*/
@Test
public void testArrayToStringFloatingPoint() {
int[] a1 = new int[] { 1 };
int[] a2 = new int[] { 0, 3, 4, 5, 6 };
ArbitraryFloatingPointNumbers value1 = new ArbitraryFloatingPointNumbers (4, false, a1);
// Case 1: Test if a given number to be converted into a string contains 1 digit
assertEquals("1", value1.arrayToString(a1));
// Case 2: Test if a given number to be converted into a string contains many digits
assertEquals("3456", value1.arrayToString(a2));
}
/**
* Testing the equals() method with 2 cases:
*/
@Test
public void testEqualsFloatingPoint() {
int[] a1 = new int[] {9,5,1,4,1,3,1,4};
ArbitraryFloatingPointNumbers value1 = new ArbitraryFloatingPointNumbers (5, false, a1);
int[] a2 = new int[] {6,7,1};
ArbitraryFloatingPointNumbers value2 = new ArbitraryFloatingPointNumbers (3, true, a2);
int[] a3 = new int[] {9,5,1,4,1,3,1,4};
ArbitraryFloatingPointNumbers value3 = new ArbitraryFloatingPointNumbers (5, false, a3);
// Case 1: Test if this number and the number to be compared is not equal:
assertEquals(false, value1.equals(value2));
// Case 2: Test if this number and the number to be compared is equal to each other:
assertEquals(true, value1.equals(value3));
}
/**
* Testing the add() method with 6 cases:
*/
@Test
public void testAddFloatingPointNumbers() {
// Case 1: Test if the addition of a positive number with another number with a bigger precision:
int[] a1 = new int[] {3,5,1};
ArbitraryFloatingPointNumbers value1 = new ArbitraryFloatingPointNumbers (2, false, a1);
int[] a2 = new int[] {5,8,7,2,1};
ArbitraryFloatingPointNumbers value2 = new ArbitraryFloatingPointNumbers (4, false, a2);
int[] a3 = new int[] {5,8,0,8,2};
ArbitraryFloatingPointNumbers value3 = new ArbitraryFloatingPointNumbers (4, false, a3);
assertEquals(true, value1.add(value1,value2).equals(value3));
// Case 2: Test if the addition of a positive number with another number with a smaller precision:
int[] a4 = new int[] {5,8,7,2,1};
ArbitraryFloatingPointNumbers value4 = new ArbitraryFloatingPointNumbers (4, false, a4);
int[] a5 = new int[] {3,5,1};
ArbitraryFloatingPointNumbers value5 = new ArbitraryFloatingPointNumbers (2, false, a5);
int[] a6 = new int[] {5,8,0,8,2};
ArbitraryFloatingPointNumbers value6 = new ArbitraryFloatingPointNumbers (4, false, a6);
assertEquals(true, value4.add(value4,value5).equals(value6));
// Case 3: Test if the addition of two positive numbers with equal precisions
int[] a7 = new int[] {5,3,1};
ArbitraryFloatingPointNumbers value7 = new ArbitraryFloatingPointNumbers (2, false, a7);
int[] a8 = new int[] {3,5,1};
ArbitraryFloatingPointNumbers value8 = new ArbitraryFloatingPointNumbers (2, false, a8);
int[] a9 = new int[] {8,8,2};
ArbitraryFloatingPointNumbers value9 = new ArbitraryFloatingPointNumbers (2, false, a9);
assertEquals(true, value7.add(value7,value8).equals(value9));
// Case 4: Test if the addition of a negative number with another number with a bigger precision
int[] a10 = new int[] {3,5,1};
ArbitraryFloatingPointNumbers value10 = new ArbitraryFloatingPointNumbers (2, true, a10);
int[] a11 = new int[] {5,8,7,2,1};
ArbitraryFloatingPointNumbers value11 = new ArbitraryFloatingPointNumbers (4, true, a11);
int[] a12 = new int[] {5,8,0,8,2};
ArbitraryFloatingPointNumbers value12 = new ArbitraryFloatingPointNumbers (4, true, a12);
assertEquals(true, value10.add(value10,value11).equals(value12));
// Case 5: Test if the addition of a negative number with another number with a smaller precision
int[] a13 = new int[] {5,8,7,2,1};
ArbitraryFloatingPointNumbers value13 = new ArbitraryFloatingPointNumbers (4, true, a13);
int[] a14 = new int[] {3,5,1};
ArbitraryFloatingPointNumbers value14 = new ArbitraryFloatingPointNumbers (2, true, a14);
int[] a15 = new int[] {5,8,0,8,2};
ArbitraryFloatingPointNumbers value15 = new ArbitraryFloatingPointNumbers (4, true, a15);
assertEquals(true, value14.add(value13,value14).equals(value15));
// Case 6: Test if the addition of two negative numbers with equal precisions
int[] a16 = new int[] {5,3,1};
ArbitraryFloatingPointNumbers value16 = new ArbitraryFloatingPointNumbers (2, true, a16);
int[] a17 = new int[] {3,5,1};
ArbitraryFloatingPointNumbers value17 = new ArbitraryFloatingPointNumbers (2, true, a17);
int[] a18 = new int[] {8,8,2};
ArbitraryFloatingPointNumbers value18 = new ArbitraryFloatingPointNumbers (2, true, a18);
assertEquals(true, value17.add(value17,value16).equals(value18));
}
/**
* Case 7 of the add() method testing: Test if the inputs with different signs will throw an Unsupported Operation Exception:
*/
@Test
public void testIfAddThrowsExceptionFloatingPoint() {
int[] a1 = new int[] {7,9,0,2,4};
ArbitraryFloatingPointNumbers value = new ArbitraryFloatingPointNumbers (true, a1);
int[] a2 = new int[] {3,1,4};
ArbitraryFloatingPointNumbers value1 = new ArbitraryFloatingPointNumbers (false, a2);
boolean thrown = false;
try {
value.add(value, value1);
}
catch (UnsupportedOperationException e) {
thrown = true;
}
assertEquals(true, thrown);
}
/**
* Testing ArbitraryWholeNumbers methods:
*/
/**
* Testing isNegativeNumber() method:
*/
@Test
public void testIsNegativeWholeNumber() {
int[] a1 = new int[] {9,5,1,4,1,3};
ArbitraryWholeNumbers value1 = new ArbitraryWholeNumbers (true, a1);
int[] a2 = new int[] {9,5,1,4,1,3,1};
ArbitraryWholeNumbers value2 = new ArbitraryWholeNumbers (false, a2);
// Case 1: Testing when given number is negative
assertEquals(true, value1.isNegativeNumber());
// Case 2: Testing when given number is positive
assertEquals(false, value2.isNegativeNumber());
}
/**
* Testing toString() method:
*/
@Test
public void testToStringWholeNumber() {
int[] a1 = new int[] {6,7,1};
ArbitraryWholeNumbers value1 = new ArbitraryWholeNumbers (true, a1);
int[] a2 = new int[] {0,0,0,3,4,5,6,0};
ArbitraryWholeNumbers value2 = new ArbitraryWholeNumbers (true, a2);
int[] a3 = new int[] {0,0,0,3,4,5,6,0,0,0};
ArbitraryWholeNumbers value3 = new ArbitraryWholeNumbers (true, a3);
int[] a4 = new int[] {6,7,1};
ArbitraryWholeNumbers value4 = new ArbitraryWholeNumbers (false, a4);
int[] a5 = new int[] {0,0,0,3,4,5,6,0};
ArbitraryWholeNumbers value5 = new ArbitraryWholeNumbers (false, a5);
int[] a6 = new int[] {0,0,0,3,4,5,6,0,0,0};
ArbitraryWholeNumbers value6 = new ArbitraryWholeNumbers (false, a6);
// Case 1: Test if this number is negative with 0 leading zero
assertEquals("-176", value1.toString());
// Case 2: Test if this number is negative with 1 leading zero
assertEquals("-6543000", value2.toString());
// Case 3: Test if this number is negative with many leading zeros
assertEquals("-6543000", value3.toString());
// Case 4: Test if this number is not negative with 0 leading zero
assertEquals("176", value4.toString());
// Case 5: Test if this number is not negative with 1 leading zero
assertEquals("6543000", value5.toString());
// Case 6: Test if this number is not negative with many leading zeros
assertEquals("6543000", value6.toString());
}
/**
* Testing the removeLeadingZero() method with 6 cases:
*/
@Test
public void testRemoveLeadingZeroWholeNumber() {
int[] a1 = new int[] { 0, 0, 0, 3, 4, 5, 6 };
int[] a2 = new int[] { 0, 0, 0, 3, 4, 5, 6, 0 };
int[] a3 = new int[] { 0, 0, 0, 3, 4, 5, 6, 0, 0, 0 };
int[] a4 = new int[] { 0, 3, 4, 5, 6 };
int[] a5 = new int[] { 3, 4, 5, 6, 0 };
int[] a6 = new int[] { 3, 4, 5, 0, 6};
int[] a7 = new int[] { 3, 4, 5, 6 };
ArbitraryWholeNumbers value1 = new ArbitraryWholeNumbers (false, a1);
// Case 1: Test 0 - test if the given digits array contains no leading zero
assertEquals(true, Arrays.equals(value1.removeLeadingZero(a1), a1));
// Case 2: Test 1 - test if the given digits array contains 1 leading zero
assertEquals(true, Arrays.equals(value1.removeLeadingZero(a2), a1));
// Case 3: Test many - test if the given digits array contains many leading zeros
assertEquals(true, Arrays.equals(value1.removeLeadingZero(a3), a1));
// Case 4: Test first - test if the first digit of the given digits array is 0
assertEquals(true, Arrays.equals(value1.removeLeadingZero(a4), a4));
// Case 5: Test last - test if the last digit of the given digits array is 0
assertEquals(true, Arrays.equals(value1.removeLeadingZero(a5), a7));
// Case 6: Test middle - test if the middle digits of the given digits array is 0
assertEquals(true, Arrays.equals(value1.removeLeadingZero(a6), a6));
}
/**
* Testing the arrayToString() method with 2 cases:
*/
@Test
public void testArrayToStringWholeNumber() {
int[] a1 = new int[] { 1 };
int[] a2 = new int[] { 0, 3, 4, 5, 6 };
ArbitraryWholeNumbers value1 = new ArbitraryWholeNumbers (false, a1);
// Case 1: Test if a given number to be converted into a string contains 1 digit
assertEquals("1", value1.arrayToString(a1));
// Case 2: Test if a given number to be converted into a string contains many digits
assertEquals("3456", value1.arrayToString(a2));
}
/**
* Testing the equals() method with 2 cases:
*/
@Test
public void testEqualsWholeNumber() {
int[] a1 = new int[] {9,5,1,4,1,3,1,4};
ArbitraryWholeNumbers value1 = new ArbitraryWholeNumbers (false, a1);
int[] a2 = new int[] {6,7,1};
ArbitraryWholeNumbers value2 = new ArbitraryWholeNumbers (true, a2);
int[] a3 = new int[] {9,5,1,4,1,3,1,4};
ArbitraryWholeNumbers value3 = new ArbitraryWholeNumbers (false, a3);
// Case 1: Test if this number and the number to be compared is not equal
assertEquals(false, value1.equals(value2));
// Case 2: Test if this number and the number to be compared is equal to each other
assertEquals(true, value1.equals(value3));
}
/**
* Testing the add() method with 2 cases:
*/
@Test
public void testAddWholeNumbers() {
// Case 1: Test if the addition of a positive number with another positive number can produce a correct result
int[] a1 = new int[] {4,1,5,8};
ArbitraryWholeNumbers value1 = new ArbitraryWholeNumbers (false, a1);
int[] a2 = new int[] {0,0,0,3,4,5,6};
ArbitraryWholeNumbers value2 = new ArbitraryWholeNumbers (false, a2);
int[] a3 = new int[] {4,1,5,1,5,5,6};
ArbitraryWholeNumbers value3 = new ArbitraryWholeNumbers (false, a3);
assertEquals(true, value1.add(value1,value2).equals(value3));
// Case 2: Test if the addition of a negative number with another negative number can produce a correct result
int[] a4 = new int[] {9,5,9};
ArbitraryWholeNumbers value4 = new ArbitraryWholeNumbers (true, a4);
int[] a5 = new int[] {9,6,9};
ArbitraryWholeNumbers value5 = new ArbitraryWholeNumbers (true, a5);
int[] a6 = new int[] {8,2,9,1};
ArbitraryWholeNumbers value6 = new ArbitraryWholeNumbers (true, a6);
assertEquals(true, value4.add(value4,value5).equals(value6));
}
/**
* Case 3 of the add() method testing: Test if the inputs with different signs will throw an Unsupported Operation Exception:
*/
@Test
public void testIfAddWholeNumbersThrowsException() {
int[] a1 = new int[] {7,9,0,2,4};
ArbitraryWholeNumbers value = new ArbitraryWholeNumbers (true, a1);
int[] a2 = new int[] {3,1,4};
ArbitraryWholeNumbers value1 = new ArbitraryWholeNumbers (false, a2);
boolean thrown = false;
try {
value.add(value, value1);
}
catch (UnsupportedOperationException e) {
thrown = true;
}
assertEquals(true, thrown);
}
/**
* Testing the ComplexNumber class:
*/
/**
* Testing the getRealPart() method with 2 cases:
*/
@Test
public void testGetRealPartComplex() {
// Case 1: Test if the method correctly returns the real part (which, in this case, is NEGATIVE) of the complex number
int[] a1 = new int[] {2,3,5,1,3};
ArbitraryFloatingPointNumbers value1 = new ArbitraryFloatingPointNumbers (4, true, a1);
int[] a2 = new int[] {3,2,1,7,6};
ArbitraryFloatingPointNumbers value2 = new ArbitraryFloatingPointNumbers (3, false, a2);
ComplexNumber c = new ComplexNumber(value1, value2);
assertEquals(true, c.getRealPart().equals(value1));
// Case 2: Test if the method correctly returns the real part (which, in this case, is POSITIVE) of the complex number
int[] a3 = new int[] {2,3,5,1,3};
ArbitraryFloatingPointNumbers value3 = new ArbitraryFloatingPointNumbers (4, false, a3);
int[] a4 = new int[] {3,2,1,7,6};
ArbitraryFloatingPointNumbers value4 = new ArbitraryFloatingPointNumbers (3, false, a4);
ComplexNumber d = new ComplexNumber(value3, value4);
assertEquals(true, d.getRealPart().equals(value3));
}
/**
* Testing the getImaginaryPart() method with 2 cases:
*/
@Test
public void testGetImaginaryPartComplex() {
// Case 1: Test if the method correctly returns the imaginary part (which, in this case, is POSITIVE) of the complex number
int[] a1 = new int[] {2,3,5,1,3};
ArbitraryFloatingPointNumbers value1 = new ArbitraryFloatingPointNumbers (4, false, a1);
int[] a2 = new int[] {3,2,1,7,6};
ArbitraryFloatingPointNumbers value2 = new ArbitraryFloatingPointNumbers (3, false, a2);
ComplexNumber c = new ComplexNumber(value1, value2);
assertEquals(true, c.getImaginaryPart().equals(value2));
// Case 2: Test if the method correctly returns the real part (which, in this case, is NEGATIVE) of the complex number
int[] a3 = new int[] {2,3,5,1,3};
ArbitraryFloatingPointNumbers value3 = new ArbitraryFloatingPointNumbers (4, false, a3);
int[] a4 = new int[] {3,2,1,7,6};
ArbitraryFloatingPointNumbers value4 = new ArbitraryFloatingPointNumbers (3, true, a4);
ComplexNumber d = new ComplexNumber(value3, value4);
assertEquals(true, d.getImaginaryPart().equals(value4));
}
/**
* Testing the add() method with 4 cases:
*/
@Test
public void testAddComplexNumbers() {
/* Case 1: Test if the addition between a complex number with a positive real part and positive imaginary part and
another complex number with a positive real part and positive imaginary part */
int[] a1 = new int[] {2,3,5,1,3};
ArbitraryFloatingPointNumbers value1 = new ArbitraryFloatingPointNumbers (4, false, a1);
int[] a2 = new int[] {3,2,1,7,6};
ArbitraryFloatingPointNumbers value2 = new ArbitraryFloatingPointNumbers (3, false, a2);
ComplexNumber c = new ComplexNumber(value1, value2);
int[] a3 = new int[] {3,0,0,0,3};
ArbitraryFloatingPointNumbers value3 = new ArbitraryFloatingPointNumbers (4, false, a3);
int[] a4 = new int[] {4,6,9,5};
ArbitraryFloatingPointNumbers value4 = new ArbitraryFloatingPointNumbers (3, false, a4);
ComplexNumber d = new ComplexNumber(value3, value4);
int[] a5 = new int[] {5,3,5,1,6};
ArbitraryFloatingPointNumbers value5 = new ArbitraryFloatingPointNumbers (4, false, a5);
int[] a6 = new int[] {7,8,0,3,7};
ArbitraryFloatingPointNumbers value6 = new ArbitraryFloatingPointNumbers (3, false, a6);
ComplexNumber e = new ComplexNumber(value5, value6);
assertEquals(true, ((c.add(d).toString()).equals(e.toString())));
/* Case 2: Test if the addition between a complex number with a positive real part and negative imaginary part and
* another complex number with a positive real part and negative imaginary part */
int[] a7 = new int[] {2,3,5,1,3};
ArbitraryFloatingPointNumbers value7 = new ArbitraryFloatingPointNumbers (4, false, a7);
int[] a8 = new int[] {3,2,1,7,6};
ArbitraryFloatingPointNumbers value8 = new ArbitraryFloatingPointNumbers (3, true, a8);
ComplexNumber f = new ComplexNumber(value7, value8);
int[] a9 = new int[] {2,3,5,1,3};
ArbitraryFloatingPointNumbers value9 = new ArbitraryFloatingPointNumbers (4, false, a9);
int[] a10 = new int[] {7,2,0,4};
ArbitraryFloatingPointNumbers value10 = new ArbitraryFloatingPointNumbers (2, true, a10);
ComplexNumber g = new ComplexNumber(value9, value10);
int[] a11 = new int[] {4,6,0,3,6};
ArbitraryFloatingPointNumbers value11 = new ArbitraryFloatingPointNumbers (4, false, a11);
int[] a12 = new int[] {3,9,3,7,0,1};
ArbitraryFloatingPointNumbers value12 = new ArbitraryFloatingPointNumbers (3, true, a12);
ComplexNumber h = new ComplexNumber(value11, value12);
assertEquals(true, ((f.add(g).toString()).equals(h.toString())));
/* Case 3: Test if the addition between a complex number with a negative real part and positive imaginary
* part and another complex number with a negative real part and positive imaginary part */
int[] a13 = new int[] {7,9,0,2,4};
ArbitraryFloatingPointNumbers value13 = new ArbitraryFloatingPointNumbers (4, true, a13);
int[] a14 = new int[] {9,9,9,9};
ArbitraryFloatingPointNumbers value14 = new ArbitraryFloatingPointNumbers (3, false, a14);
ComplexNumber i = new ComplexNumber(value13, value14);
int[] a15 = new int[] {2,2,5};
ArbitraryFloatingPointNumbers value15 = new ArbitraryFloatingPointNumbers (2, true, a15);
int[] a16 = new int[] {7,7,7,7,8};
ArbitraryFloatingPointNumbers value16 = new ArbitraryFloatingPointNumbers (4, false, a16);
ComplexNumber j = new ComplexNumber(value15, value16);
int[] a17 = new int[] {7,9,2,4,9};
ArbitraryFloatingPointNumbers value17 = new ArbitraryFloatingPointNumbers (4, true, a17);
int[] a18 = new int[] {7,6,7,7,8,1};
ArbitraryFloatingPointNumbers value18 = new ArbitraryFloatingPointNumbers (4, false, a18);
ComplexNumber k = new ComplexNumber(value17, value18);
assertEquals(true, ((i.add(j).toString()).equals(k.toString())));
/* Case 4: Test if the addition between a complex number with a negative real part and negative imaginary part and
* another complex number with a negative real part and negative imaginary part */
int[] a19 = new int[] {7,9,0,2,4};
ArbitraryFloatingPointNumbers value19 = new ArbitraryFloatingPointNumbers (4, true, a19);
int[] a20 = new int[] {9,9,9,9};
ArbitraryFloatingPointNumbers value20 = new ArbitraryFloatingPointNumbers (3, true, a20);
ComplexNumber l = new ComplexNumber(value7, value8);
int[] a21 = new int[] {2,2,5};
ArbitraryFloatingPointNumbers value21 = new ArbitraryFloatingPointNumbers (4, true, a21);
int[] a22 = new int[] {7,7,7,7,8};
ArbitraryFloatingPointNumbers value22 = new ArbitraryFloatingPointNumbers (2, true, a22);
ComplexNumber m = new ComplexNumber(value9, value10);
int[] a23 = new int[] {7,9,2,4,9};
ArbitraryFloatingPointNumbers value23 = new ArbitraryFloatingPointNumbers (4, true, a23);
int[] a24 = new int[] {7,6,7,7,8,1};
ArbitraryFloatingPointNumbers value24 = new ArbitraryFloatingPointNumbers (3, true, a24);
ComplexNumber n = new ComplexNumber(value11, value12);
assertEquals(true, ((l.add(m).toString()).equals(n.toString())));
// Case 5: Test if adding in hierarchy can produce a correct number
// Test if adding a complex number with an integer number can produce a correct result
int[] a25 = new int[] {7,9,7,2,7};
ArbitraryWholeNumbers value25 = new ArbitraryWholeNumbers (false, a25);
int[] a26 = new int[] {7,9,7,2,7};
ArbitraryWholeNumbers value26 = new ArbitraryWholeNumbers (false, a26);
ComplexNumber complexNumber = new ComplexNumber (value25, value26);
IntegerNumber integerNumber = new IntegerNumber (value25);
int[] a27 = new int[] {4,9,5,5,4,1};
ArbitraryFloatingPointNumbers value27 = new ArbitraryFloatingPointNumbers (false, a27);
int[] a28 = new int[] {7,9,7,2,7};
ArbitraryFloatingPointNumbers value28 = new ArbitraryFloatingPointNumbers (false, a28);
ComplexNumber complexNumber2 = new ComplexNumber (value27, value28);
assertEquals(true, ((complexNumber.add(integerNumber).toString()).equals(complexNumber2.toString())));
}
/**
* Case 6 of the add() method testing: Test if the inputs with different signs will throw an Unsupported Operation Exception:
*/
@Test
public void testIfAddComplexThrowsException() {
int[] a1 = new int[] {7,9,0,2,4};
ArbitraryWholeNumbers value = new ArbitraryWholeNumbers (true, a1);
int[] a2 = new int[] {3,1,4};
ArbitraryWholeNumbers value1 = new ArbitraryWholeNumbers (false, a2);
ComplexNumber c1 = new ComplexNumber (value, value1);
int[] a3 = new int[] {7,2,9,5,6};
ArbitraryWholeNumbers value2 = new ArbitraryWholeNumbers (false, a3);
int[] a4 = new int[] {5,6};
ArbitraryWholeNumbers value3 = new ArbitraryWholeNumbers (true, a4);
ComplexNumber c2 = new ComplexNumber (value2, value3);
boolean thrown = false;
try {
c1.add(c2);
}
catch (UnsupportedOperationException e) {
thrown = true;
}
assertEquals(true, thrown);
}
/**
* Testing the equals() method with 2 cases:
*/
@Test
public void testEqualsComplexNumbers() {
// Case 1: Test if this complex number and the number to be compared is equal
int[] a1 = new int[] {2,3,5,1,3};
ArbitraryFloatingPointNumbers value1 = new ArbitraryFloatingPointNumbers (4, true, a1);
int[] a2 = new int[] {3,2,1,7,6};
ArbitraryFloatingPointNumbers value2 = new ArbitraryFloatingPointNumbers (3, false, a2);
ComplexNumber c = new ComplexNumber(value1, value2);
int[] a3 = new int[] {2,3,5,1,3};
ArbitraryFloatingPointNumbers value3 = new ArbitraryFloatingPointNumbers (4, true, a3);
int[] a4 = new int[] {3,2,1,7,6};
ArbitraryFloatingPointNumbers value4 = new ArbitraryFloatingPointNumbers (3, false, a4);
ComplexNumber d = new ComplexNumber(value3, value4);
assertEquals(true, c.equals(c,d));
// Case 2: Test if this complex number and the number to be compared is not equal
int[] a5 = new int[] {2,3,5,1,3};
ArbitraryFloatingPointNumbers value5 = new ArbitraryFloatingPointNumbers (4, true, a5);
int[] a6 = new int[] {3,2,1,7};
ArbitraryFloatingPointNumbers value6 = new ArbitraryFloatingPointNumbers (3, false, a6);
ComplexNumber e = new ComplexNumber(value5, value6);
int[] a7 = new int[] {2,3,5,3};
ArbitraryFloatingPointNumbers value7 = new ArbitraryFloatingPointNumbers (4, true, a7);
int[] a8 = new int[] {2,1,7};
ArbitraryFloatingPointNumbers value8 = new ArbitraryFloatingPointNumbers (3, false, a8);
ComplexNumber f = new ComplexNumber(value7, value8);
assertEquals(false, e.equals(e,f));
}
/**
* Testing the toString() method with 4 cases:
*/
@Test
public void testToStringComplexNumbers() {
// Case 1: Test if the complex number to be represented contains a positive real part and positive imaginary part
int[] a5 = new int[] {2,3,5,1,3};
ArbitraryFloatingPointNumbers value5 = new ArbitraryFloatingPointNumbers (4, false, a5);
int[] a6 = new int[] {3,2,1,7,6};
ArbitraryFloatingPointNumbers value6 = new ArbitraryFloatingPointNumbers (3, false, a6);
ComplexNumber a = new ComplexNumber(value5, value6);
assertEquals("3.1532 + 67.123i", a.toString());
// Case 2: Test if the complex number to be represented contains a negative real part and positive imaginary part
int[] a1 = new int[] {2,3,5,1,3};
ArbitraryFloatingPointNumbers value1 = new ArbitraryFloatingPointNumbers (4, true, a1);
int[] a2 = new int[] {3,2,1,7,6};
ArbitraryFloatingPointNumbers value2 = new ArbitraryFloatingPointNumbers (3, false, a2);
ComplexNumber c = new ComplexNumber(value1, value2);
assertEquals("-3.1532 + 67.123i", c.toString());
// Case 3: Test if the complex number to be represented contains a positive real part and negative imaginary part
int[] a3 = new int[] {3,0,0,0,9};
ArbitraryFloatingPointNumbers value3 = new ArbitraryFloatingPointNumbers (4, false, a3);
int[] a4 = new int[] {3,9,1,0};
ArbitraryFloatingPointNumbers value4 = new ArbitraryFloatingPointNumbers (3, true, a4);
ComplexNumber d = new ComplexNumber(value3, value4);
assertEquals("9.0003 -0.193i", d.toString());
// Case 4: Test if the complex number to be represented contains a negative real part and negative imaginary part
int[] a7 = new int[] {2,3,5,1,3};
ArbitraryFloatingPointNumbers value7 = new ArbitraryFloatingPointNumbers (4, true, a7);
int[] a8 = new int[] {3,2,1,7,6};
ArbitraryFloatingPointNumbers value8 = new ArbitraryFloatingPointNumbers (3, true, a8);
ComplexNumber b = new ComplexNumber(value7, value8);
assertEquals("-3.1532 -67.123i", b.toString());
}
/**
* Testing the methods of the Gaussian Integer class
*/
/**
* Testing the getRealPart() method with 2 cases:
*/
@Test
public void testGetRealPartGaussian() {
// Case 1: Test if the method correctly returns the real part (which, in this case, is negative) of the gaussian integer
int[] a1 = new int[] {2,3,5,1,3};
ArbitraryWholeNumbers value1 = new ArbitraryWholeNumbers (true, a1);
int[] a2 = new int[] {3,2,1,7,6};
ArbitraryWholeNumbers value2 = new ArbitraryWholeNumbers (false, a2);
GaussianInteger g = new GaussianInteger(value1, value2);
assertEquals(true, g.getRealPart().equals(value1));
// Case 2: Test if the method correctly returns the real part (which, in this case, is positive) of the gaussian integer
int[] a3 = new int[] {2,3,5,1,3};
ArbitraryWholeNumbers value3 = new ArbitraryWholeNumbers (false, a3);
int[] a4 = new int[] {3,2,1,7,6};
ArbitraryWholeNumbers value4 = new ArbitraryWholeNumbers (false, a4);
GaussianInteger c = new GaussianInteger(value3, value4);
assertEquals(true, c.getRealPart().equals(value3));
}
/**
* Testing the getImaginaryPart() method with 2 cases:
*/
@Test
public void testGetImaginaryPartGaussian() {
// Case 1: Test if the method correctly returns the imaginary part (which, in this case, is positive) of the gaussian integer
int[] a1 = new int[] {2,3,5,1,3};
ArbitraryWholeNumbers value1 = new ArbitraryWholeNumbers (true, a1);
int[] a2 = new int[] {3,2,1,7,6};
ArbitraryWholeNumbers value2 = new ArbitraryWholeNumbers (false, a2);
GaussianInteger g = new GaussianInteger(value1, value2);
assertEquals(true, g.getImaginaryPart().equals(value2));
// Case 2: Test if the method correctly returns the imaginary part (which, in this case, is negative) of the gaussian integer
int[] a3 = new int[] {2,3,5,1,3};
ArbitraryWholeNumbers value3 = new ArbitraryWholeNumbers (true, a3);
int[] a4 = new int[] {3,2,1,7,6};
ArbitraryWholeNumbers value4 = new ArbitraryWholeNumbers (true, a4);
GaussianInteger c = new GaussianInteger(value3, value4);
assertEquals(true, c.getImaginaryPart().equals(value4));
}
/**
* Testing the add() method with 4 cases:
*/
@Test
public void testAddGaussian() {
/* Case 1: Test if the addition between a gaussian with a positive real part and positive imaginary part and
another complex number with a positive real part and positive imaginary part */
int[] a1 = new int[] {2,3,5,1,3};
ArbitraryWholeNumbers value1 = new ArbitraryWholeNumbers (false, a1);
int[] a2 = new int[] {3,2,1,7,6};
ArbitraryWholeNumbers value2 = new ArbitraryWholeNumbers (false, a2);
GaussianInteger c = new GaussianInteger(value1, value2);
int[] a3 = new int[] {3,0,0,0,3};
ArbitraryWholeNumbers value3 = new ArbitraryWholeNumbers (false, a3);
int[] a4 = new int[] {4,6,9,5};
ArbitraryWholeNumbers value4 = new ArbitraryWholeNumbers (false, a4);
GaussianInteger d = new GaussianInteger(value3, value4);
int[] a5 = new int[] {5,3,5,1,6};
ArbitraryWholeNumbers value5 = new ArbitraryWholeNumbers (false, a5);
int[] a6 = new int[] {7,8,0,3,7};
ArbitraryWholeNumbers value6 = new ArbitraryWholeNumbers (false, a6);
GaussianInteger e = new GaussianInteger(value5, value6);
assertEquals(true, ((c.add(d).toString()).equals(e.toString())));
/* Case 2: Test if the addition between a gaussian with a positive real part and negative imaginary part and
* another complex number with a positive real part and negative imaginary part */
int[] a7 = new int[] {2,3,5,1,3};
ArbitraryWholeNumbers value7 = new ArbitraryWholeNumbers (false, a7);
int[] a8 = new int[] {3,2,1,7,6};
ArbitraryWholeNumbers value8 = new ArbitraryWholeNumbers (true, a8);
GaussianInteger f = new GaussianInteger(value7, value8);
int[] a9 = new int[] {2,3,5,1,3};
ArbitraryWholeNumbers value9 = new ArbitraryWholeNumbers (false, a9);
int[] a10 = new int[] {7,2,0,4};
ArbitraryWholeNumbers value10 = new ArbitraryWholeNumbers (true, a10);
GaussianInteger g = new GaussianInteger(value9, value10);
int[] a11 = new int[] {4,6,0,3,6};
ArbitraryWholeNumbers value11 = new ArbitraryWholeNumbers (false, a11);
int[] a12 = new int[] {0,5,1,1,7};
ArbitraryWholeNumbers value12 = new ArbitraryWholeNumbers (true, a12);
GaussianInteger h = new GaussianInteger(value11, value12);
assertEquals(true, ((f.add(g).toString()).equals(h.toString())));
/* Case 3: Test if the addition between a gaussian with a negative real part and positive imaginary
* part and another complex number with a negative real part and positive imaginary part */
int[] a13 = new int[] {7,9,0,2,4};
ArbitraryWholeNumbers value13 = new ArbitraryWholeNumbers (true, a13);
int[] a14 = new int[] {9,9,9,9};
ArbitraryWholeNumbers value14 = new ArbitraryWholeNumbers (false, a14);
GaussianInteger i = new GaussianInteger(value13, value14);
int[] a15 = new int[] {2,2,5};
ArbitraryWholeNumbers value15 = new ArbitraryWholeNumbers (true, a15);
int[] a16 = new int[] {7,7,7,7,8};
ArbitraryWholeNumbers value16 = new ArbitraryWholeNumbers (false, a16);
GaussianInteger j = new GaussianInteger(value15, value16);
int[] a17 = new int[] {9,1,6,2,4};
ArbitraryWholeNumbers value17 = new ArbitraryWholeNumbers (true, a17);
int[] a18 = new int[] {6,7,7,7,9};
ArbitraryWholeNumbers value18 = new ArbitraryWholeNumbers (false, a18);
GaussianInteger k = new GaussianInteger(value17, value18);
assertEquals(true, ((i.add(j).toString()).equals(k.toString())));
/* Case 4: Test if the addition between a gaussian with a negative real part and negative imaginary part and
* another complex number with a negative real part and negative imaginary part */
int[] a19 = new int[] {7,9,0,2,4};
ArbitraryWholeNumbers value19 = new ArbitraryWholeNumbers (true, a19);
int[] a20 = new int[] {9,9,9,9};
ArbitraryWholeNumbers value20 = new ArbitraryWholeNumbers (true, a20);
GaussianInteger l = new GaussianInteger(value7, value8);
int[] a21 = new int[] {2,2,5};
ArbitraryWholeNumbers value21 = new ArbitraryWholeNumbers (true, a21);
int[] a22 = new int[] {7,7,7,7,8};
ArbitraryWholeNumbers value22 = new ArbitraryWholeNumbers (true, a22);
GaussianInteger m = new GaussianInteger(value9, value10);
int[] a23 = new int[] {9,1,6,2,4};
ArbitraryWholeNumbers value23 = new ArbitraryWholeNumbers (true, a23);
int[] a24 = new int[] {6,7,7,7,9};
ArbitraryWholeNumbers value24 = new ArbitraryWholeNumbers (true, a24);
GaussianInteger n = new GaussianInteger(value11, value12);
assertEquals(true, ((l.add(m).toString()).equals(n.toString())));
// Case 5: Test if adding in hierarchy can produce a correct number
// Test if adding a gaussian number with an integer number can produce a correct result
int[] a25 = new int[] {7,9,7,2,7};
ArbitraryWholeNumbers value25 = new ArbitraryWholeNumbers (false, a25);
int[] a26 = new int[] {7,9,7,2,7};
ArbitraryWholeNumbers value26 = new ArbitraryWholeNumbers (false, a26);
GaussianInteger number = new GaussianInteger (value25, value26);
IntegerNumber integerNumber = new IntegerNumber (value25);
int[] a27 = new int[] {4,9,5,5,4,1};
ArbitraryWholeNumbers value27 = new ArbitraryWholeNumbers (false, a27);
int[] a28 = new int[] {7,9,7,2,7};
ArbitraryWholeNumbers value28 = new ArbitraryWholeNumbers (false, a28);
GaussianInteger number2 = new GaussianInteger (value27, value28);
assertEquals(true, ((number.add(integerNumber).toString()).equals(number2.toString())));
}
/**
* Case 6 of the add() method testing: Test if the inputs with different signs will throw an Unsupported Operation Exception:
*/
@Test
public void testIfGaussianAddMethodThrowsException() {
int[] a1 = new int[] {7,9,0,2,4};
ArbitraryWholeNumbers value = new ArbitraryWholeNumbers (true, a1);
int[] a2 = new int[] {3,1,4};
ArbitraryWholeNumbers value1 = new ArbitraryWholeNumbers (false, a2);
GaussianInteger g1 = new GaussianInteger (value, value1);
int[] a3 = new int[] {7,6,9,0,0};
ArbitraryWholeNumbers value2 = new ArbitraryWholeNumbers (false, a3);
int[] a4 = new int[] {6,5};
ArbitraryWholeNumbers value3 = new ArbitraryWholeNumbers (false, a4);
GaussianInteger g2 = new GaussianInteger (value2, value3);
boolean thrown = false;
try {
g2.add(g1);
}
catch (UnsupportedOperationException e) {
thrown = true;
}
assertTrue(thrown);
}
/**
* Testing the toString() method with 4 cases:
*/
@Test
public void testToStringGaussian() {
// Case 1: Test if the complex number to be represented contains a positive real part and positive imaginary part
int[] a5 = new int[] {2,3,5,1,3};
ArbitraryWholeNumbers value5 = new ArbitraryWholeNumbers (false, a5);
int[] a6 = new int[] {3,2,1,7,6};
ArbitraryWholeNumbers value6 = new ArbitraryWholeNumbers (false, a6);
GaussianInteger a = new GaussianInteger(value5, value6);
assertEquals("31532 + 67123i", a.toString());
// Case 2: Test if the complex number to be represented contains a negative real part and positive imaginary part
int[] a1 = new int[] {2,3,5,1,3};
ArbitraryWholeNumbers value1 = new ArbitraryWholeNumbers (true, a1);
int[] a2 = new int[] {3,2,1,7,6};
ArbitraryWholeNumbers value2 = new ArbitraryWholeNumbers (false, a2);
GaussianInteger c = new GaussianInteger(value1, value2);
assertEquals("-31532 + 67123i", c.toString());
// Case 3: Test if the complex number to be represented contains a positive real part and negative imaginary part
int[] a3 = new int[] {3,0,0,0,9};
ArbitraryWholeNumbers value3 = new ArbitraryWholeNumbers (false, a3);
int[] a4 = new int[] {3,9,1,0};
ArbitraryWholeNumbers value4 = new ArbitraryWholeNumbers (true, a4);
GaussianInteger d = new GaussianInteger(value3, value4);
assertEquals("90003 -193i", d.toString());
// Case 4: Test if the complex number to be represented contains a negative real part and negative imaginary part
int[] a7 = new int[] {2,3,5,1,3};
ArbitraryWholeNumbers value7 = new ArbitraryWholeNumbers (true, a7);
int[] a8 = new int[] {3,2,1,7,6};
ArbitraryWholeNumbers value8 = new ArbitraryWholeNumbers (true, a8);
GaussianInteger b = new GaussianInteger(value7, value8);
assertEquals("-31532 -67123i", b.toString());
}
/**
* Testing the equals() method with 2 cases:
*/
@Test
public void testEqualsGaussian() {
// Case 1: Test if this gaussian integers and the number to be compared is equal
int[] a1 = new int[] {2,3,5,1,3};
ArbitraryWholeNumbers value1 = new ArbitraryWholeNumbers (true, a1);
int[] a2 = new int[] {3,2,1,7,6};
ArbitraryWholeNumbers value2 = new ArbitraryWholeNumbers (false, a2);
GaussianInteger c = new GaussianInteger(value1, value2);
int[] a3 = new int[] {2,3,5,1,3};
ArbitraryWholeNumbers value3 = new ArbitraryWholeNumbers (true, a3);
int[] a4 = new int[] {3,2,1,7,6};
ArbitraryWholeNumbers value4 = new ArbitraryWholeNumbers (false, a4);
GaussianInteger d = new GaussianInteger(value3, value4);
assertEquals(true, c.equals(c,d));
// Case 2: Test if this gaussian integers and the number to be compared is not equal
int[] a5 = new int[] {2,3,5,1,3};
ArbitraryWholeNumbers value5 = new ArbitraryWholeNumbers (true, a5);
int[] a6 = new int[] {3,2,1,7};
ArbitraryWholeNumbers value6 = new ArbitraryWholeNumbers (false, a6);
GaussianInteger e = new GaussianInteger(value5, value6);
int[] a7 = new int[] {2,3,5,3};
ArbitraryWholeNumbers value7 = new ArbitraryWholeNumbers (true, a7);
int[] a8 = new int[] {2,1,7};
ArbitraryWholeNumbers value8 = new ArbitraryWholeNumbers (false, a8);
GaussianInteger f = new GaussianInteger(value7, value8);
assertEquals(false, e.equals(e,f));
}
/**
* Testing the RealNumber class:
*/
/**
* Testing the getNumber() method with 2 cases:
*/
@Test
public void testGetNumberRealNumber() {
// Case 1: Test if the method correctly returns the number (which, in this case, is negative)
int[] a1 = new int[] {2,3,5,1,3};
ArbitraryWholeNumbers value1 = new ArbitraryWholeNumbers (true, a1);
RealNumber g = new RealNumber(value1);
assertEquals(true, g.getNumber().equals(value1));
// Case 2: Test if the method correctly returns the number (which, in this case, is positive)
int[] a3 = new int[] {2,3,5,1,3};
ArbitraryWholeNumbers value3 = new ArbitraryWholeNumbers (false, a3);
RealNumber c = new RealNumber(value3);
assertEquals(true, c.getNumber().equals(value3));
}
/**
* Testing the getRealPart() method with 2 cases:
*/
@Test
public void testGetRealPartRealNumber() {
// Case 1: Test if the method correctly returns the number itself (which, in this case, is positive):
int[] a1 = new int[] {2,3,5,1,3};
ArbitraryWholeNumbers value1 = new ArbitraryWholeNumbers (true, a1);
RealNumber g = new RealNumber(value1);
assertEquals(true, g.getRealPart().equals(value1));
// Case 2: Test if the method correctly returns the number itself (which, in this case, is negative):
int[] a3 = new int[] {2,3,5,1,3};
ArbitraryWholeNumbers value3 = new ArbitraryWholeNumbers (false, a3);
RealNumber c = new RealNumber(value3);
assertEquals(true, c.getRealPart().equals(value3));
}
/**
* Testing the getImaginaryPart() method with 1 case:
*/
@Test
public void testGetImaginaryPartRealNumber() {
// Case 1: Test if the method correctly returns the number of 0, as a real number cannot have any imaginary part:
int[] a1 = new int[] {2,3,5,1,3};
ArbitraryWholeNumbers value1 = new ArbitraryWholeNumbers (true, a1);
ArbitraryWholeNumbers value2 = new ArbitraryWholeNumbers (false, new int[] {0});
RealNumber g = new RealNumber(value1);
assertEquals(true, g.getImaginaryPart().equals(value2));
}
/**
* Testing the add() method with 2 cases:
*/
@Test
public void testAddRealNumber() {
/* Case 1: Test if the addition of a positive real number and a positive real number yields the correct result */
int[] a1 = new int[] {2,3,5,1,3};
ArbitraryFloatingPointNumbers value1 = new ArbitraryFloatingPointNumbers (false, a1);
RealNumber c = new RealNumber(value1);
int[] a2 = new int[] {3,2,1,7,6};
ArbitraryFloatingPointNumbers value2 = new ArbitraryFloatingPointNumbers (false, a2);
RealNumber d = new RealNumber(value2);
int[] a3 = new int[] {5,5,6,8,9};
ArbitraryFloatingPointNumbers value3 = new ArbitraryFloatingPointNumbers (false, a3);
RealNumber e = new RealNumber(value3);
assertEquals(true, ((c.add(d).toString()).equals(e.toString())));
/* Case 2: Test if the addition of a negative real number and a negative real number yields the correct result */
int[] a4 = new int[] {2,3,5,1,3};
ArbitraryFloatingPointNumbers value4 = new ArbitraryFloatingPointNumbers (true, a4);
RealNumber l = new RealNumber(value4);
int[] a5 = new int[] {3,2,1,7,6};
ArbitraryFloatingPointNumbers value5 = new ArbitraryFloatingPointNumbers (true, a5);
RealNumber m = new RealNumber(value5);
int[] a6 = new int[] {5,5,6,8,9};
ArbitraryFloatingPointNumbers value6 = new ArbitraryFloatingPointNumbers (true, a6);
RealNumber n = new RealNumber(value6);
assertEquals(true, ((l.add(m).toString()).equals(n.toString())));
// Case 3: Test if adding in hierarchy can produce a correct number
// Test if adding a real number with an integer number can produce a correct result
int[] a25 = new int[] {7,9,7,2,7};
ArbitraryWholeNumbers value25 = new ArbitraryWholeNumbers (false, a25);
int[] a26 = new int[] {7,9,7,2,7};
ArbitraryWholeNumbers value26 = new ArbitraryWholeNumbers (false, a26);
RealNumber number = new RealNumber (value25);
IntegerNumber integerNumber = new IntegerNumber (value26);
int[] a27 = new int[] {4,9,5,5,4,1};
ArbitraryFloatingPointNumbers value27 = new ArbitraryFloatingPointNumbers (false, a27);
RealNumber number2 = new RealNumber (value27);
assertEquals(true, ((number.add(integerNumber).toString()).equals(number2.toString())));
}
/**
* Case 4 of the add() method testing: Test if the inputs with different signs will throw an Unsupported Operation Exception:
*/
@Test
public void testIfAddRealNumberThrowsException() {
int[] a1 = new int[] {7,9,0,2,4};
ArbitraryWholeNumbers value = new ArbitraryWholeNumbers (true, a1);
RealNumber r = new RealNumber (value);
int[] a2 = new int[] {3,1,4};
ArbitraryWholeNumbers value1 = new ArbitraryWholeNumbers (false, a2);
RealNumber r1 = new RealNumber (value1);
boolean thrown = false;
try {
r1.add(r);
}
catch (UnsupportedOperationException e) {
thrown = true;
}
assertTrue(thrown);
}
/**
* Testing the equals() method with 2 cases:
*/
@Test
public void testEqualsRealNumber() {
// Case 1: Test if two real numbers to be compared are equal to each other:
int[] a1 = new int[] {2,3,5,1,3};
ArbitraryFloatingPointNumbers value1 = new ArbitraryFloatingPointNumbers (false, a1);
RealNumber c = new RealNumber(value1);
int[] a2 = new int[] {2,3,5,1,3};
ArbitraryFloatingPointNumbers value2 = new ArbitraryFloatingPointNumbers (false, a2);
RealNumber d = new RealNumber(value2);
assertEquals(true, (c.equals(c,d)));
// Case 2: Test if two real numbers to be compared are NOT equal to each other:
int[] a4 = new int[] {2,3,5,1,3};
ArbitraryFloatingPointNumbers value4 = new ArbitraryFloatingPointNumbers (false, a4);
RealNumber l = new RealNumber(value4);
int[] a5 = new int[] {3,2,1,7,6};
ArbitraryFloatingPointNumbers value5 = new ArbitraryFloatingPointNumbers (true, a5);
RealNumber m = new RealNumber(value5);
assertEquals(false, (l.equals(l,m)));
}
/**
* Testing the toString() method with 2 cases:
*/
@Test
public void testToStringRealNumber() {
// Case 1: Test if the real number to be represented is negative:
int[] a1 = new int[] {2,3,5,1,3};
ArbitraryFloatingPointNumbers value1 = new ArbitraryFloatingPointNumbers (true, a1);
RealNumber c = new RealNumber(value1);
assertEquals("-31532.", (c.toString()));
// Case 2: Test if the real number to be represented is positive:
int[] a4 = new int[] {2,3,5,1,3};
ArbitraryFloatingPointNumbers value4 = new ArbitraryFloatingPointNumbers (false, a4);
RealNumber l = new RealNumber(value4);
assertEquals("31532.", (l.toString()));
}
/**
* Testing methods of class RationalNumber:
*/