diff --git a/docs/src/tutorials/chaotic_ode.md b/docs/src/tutorials/chaotic_ode.md index 11bbb417f..d8213c4e8 100644 --- a/docs/src/tutorials/chaotic_ode.md +++ b/docs/src/tutorials/chaotic_ode.md @@ -35,7 +35,7 @@ u0 = [1.0, 0.0, 0.0] prob = ODEProblem(lorenz!, u0, tspan, p) sol = solve(prob, Vern9(), abstol = 1e-14, reltol = 1e-14) sol2 = solve(prob, Vern9(), abstol = 1e-14 + eps(Float64), reltol = 1e-14) -pl1 = plot(sol, vars = (1, 2, 3), legend = true, +pl1 = plot(sol, idxs = (1, 2, 3), legend = true, label = "sol", labelfontsize = 20, lw = 2, @@ -122,7 +122,7 @@ g(u, p, t) = u[end] function G(p) _prob = remake(prob_attractor, p = p) - _sol = solve(_prob, Vern9(), abstol = 1e-14, reltol = 1e-14, saveat = 0.01, + _sol = solve(_prob, Vern9(), abstol = 1e-8, reltol = 1e-8, saveat = 0.01, sensealg = ForwardLSS(g = g)) sum(getindex.(_sol.u, 3)) end @@ -133,7 +133,7 @@ Alternatively, we can define the `ForwardLSSProblem` and solve it via `shadow_forward` as follows: ```@example chaosode -sol_attractor = solve(prob_attractor, Vern9(), abstol = 1e-14, reltol = 1e-14) +sol_attractor = solve(prob_attractor, Vern9(), abstol = 1e-8, reltol = 1e-8) lss_problem = ForwardLSSProblem(sol_attractor, ForwardLSS(g = g)) resfw = shadow_forward(lss_problem) ``` diff --git a/test/gpu/diffeqflux_standard_gpu.jl b/test/gpu/diffeqflux_standard_gpu.jl index c49c24f70..35bf6c57f 100644 --- a/test/gpu/diffeqflux_standard_gpu.jl +++ b/test/gpu/diffeqflux_standard_gpu.jl @@ -30,7 +30,7 @@ function predict_neuralode(p) end function loss_neuralode(p) pred = predict_neuralode(p) - loss = sum(abs2, ode_data .- pred) + loss = sum(abs2, ode_data .- gdev(pred)) return loss end