-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
49 lines (31 loc) · 1.25 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import copy
from collections import namedtuple, deque
import numpy as np
import random
from model import Actor,Critic
#change this to your Reacher.exe path
env = UnityEnvironment(file_name='Reacher_Windows_x86_64/Reacher.exe')
# get the default brain
brain_name = env.brain_names[0]
brain = env.brains[brain_name]
agent.actor_local.load_state_dict(torch.load('actor_model.pth',map_location= 'cpu'))
agent.critic_local.load_state_dict(torch.load('critic_model.pth', map_location = 'cpu'))
for episode in range(3):
env_info = env.reset(train_mode=False)[brain_name]
states = env_info.vector_observations
score = np.zeros(num_agents)
while True:
actions = agent.act(states, add_noise=False)
env_info = env.step(actions)[brain_name]
next_states = env_info.vector_observations
rewards = env_info.rewards
dones = env_info.local_done
score += rewards
states = next_states
if np.any(dones):
break
print('Episode: \t{} \tScore: \t{:.2f}'.format(episode, np.mean(score)))